当前位置:首页 >> 研究队伍
   

研究员

  • 姓名: 李光祚
  • 性别: 男
  • 职称: 研究员
  • 职务: 副主任(主持工作)
  • 学历: 博士研究生
  • 电话: 
  • 传真: 
  • 电子邮件: ligz@aircas.ac.cn
  • 通讯地址: 
    简  历:
  • 李光祚,中国科学院空天信息创新研究院,研究员。研究方向为多源遥感信号与信息处理应用,重点开展星载SAR成像信号处理、SAR卫星成像干扰与抗干扰、巨星座系统设计与数据处理应用等方面研究。先后主持10余项预先研究和重大工程研制任务,经费累计超过6亿元。现担任中国科学院大学研究生导师、空天院网络电磁空间信息技术研究部(第十三部)部门负责人,在国内外学术期刊、会议发表学术论文31篇,授权/受理专利14项,曾获省部级一等奖、二等奖。


    工作经历:

    2024.12—至今     中国科学院空天信息创新研究院    研究员

    2020.12—2024.12  中国科学院空天信息创新研究院    副研究员

    2020.10—2020.11  中国科学院空天信息创新研究院    助理研究员


    社会任职:
    研究方向:
  • 卫星遥感信号与信息处理


    承担科研项目情况:
  • (1)巨星座系统体系设计          负责人  国家任务   2024.04—2028.12
    (2)网络智能信息系统体系研究    负责人  国家任务   2023.10—2026.12
    (3)重点研发计划-信号接收与分析 负责人  国家任务   2022.12—2024.11
    (4)多源信号数据中心            负责人  国家任务   2022.09—2024.12

    (5)成像雷达宽带正交波形设计    负责人  预先研究   2023.12—2025.12


    代表论著:
  • (1)学术论文

    [1] Xu, Z., Zhang, B., Li, G., Zhan, X., Bao, Y., & Wu, Y. (2024). Analysis of phase preservation and interferometric offset test in sparse SAR imaging. Science China Information Sciences, 67(2), 122303. (SCI)

    [2] Zuo, Y., Li, G., Ren, W., & Hu, Y. (2024). A Deep Similarity Clustering Network with Compound Regularization for Unsupervised PolSAR Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. (SCI)

    [3] Zhang, J., Zhang, W., Zhou, X., Chu, Q., Yin, X., Li, G., ... & Jin, F. (2024). CNN and Transformer Fusion Network for Sea Ice Classification Using GaoFen-3 Polarimetric SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. (SCI)

    [4] Zhang, W., Dai, X., Chu, Q., Liao, Z., Hu, S., Zhang, J., Li, G., ... & Jin, F. (2024). FFSSNet: Fast Fine Semantic Segmentation Network for GF-3 SAR Images in Building Areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. (SCI)

    [5] Zhang, W., Zhang, J., Chu, Q., Dai, X., Ding, H., & Li, G. (2023, December). Researches on polarimetric decomposition and 3DCNN for Arctic sea ice classification using Gaofen-3 fully polarimetric SAR data. In IET International Radar Conference (IRC 2023) (Vol. 2023, pp. 3122-3128). IET. (EI)

    [6] Zhang, W., Dai, X., Chu, Q., Zhang, J., Ding, H., & Li, G. (2023, December). SFDFNet: single-path feature deep fusion network for fast semantic segmentation of SAR images in building areas. In IET International Radar Conference (IRC 2023) (Vol. 2023, pp. 3687-3693). IET. (EI)

    [7] Zuo, Y., Li, G., & Ren, W. (2023). A deep similarity-based network with compound regularization for unsupervised PolSAR image classification. (EI)

    [8] Shen, J., Han, B., Pan, Z., Li, G., Hu, Y., & Ding, C. (2022). Learning time–frequency information with prior for SAR radio frequency interference suppression. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. (SCI)

    [9] Lyu, Q., Han, B., Li, G., Sun, W., Pan, Z., Hong, W., & Hu, Y. (2021). SAR interference suppression algorithm based on low-rank and sparse matrix decomposition in time–frequency domain. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. (SCI)

    [10] Li, G., Fang, S., Han, B., Zhang, Z., Hong, W., & Wu, Y. (2020). Compensation of Phase Errors for Spotlight SAR With Discrete Azimuth Beam Steering Based on Entropy Minimization. IEEE Geoscience and Remote Sensing Letters, 18(5), 841-845. (SCI)

    [11] Li, G., Zhang, Z., Zhang, Y., Fang, S., Hong, W., & Wu, Y. (2020). Estimation and correction of vibration-induced range cell migration for FMCW synthetic aperture ladar. Applied Optics, 59(9), 2874-2882. (SCI)

    [12] Mo, D., Wang, N., Wang, R., Song, Z. Q., Li, G. Z., & Wu, Y. R. (2019). Single-frequency LADAR super-resolution Doppler tomography for extended targets. Optics Express, 27(9), 12923-12938. (SCI)

    [13] Mo, D., Wang, N., Li, G., Wang, R., & Wu, Y. (2018). 3-D inverse synthetic aperture ladar imaging and scaling of space debris based on the fractional Fourier transform. IEEE Geoscience and Remote Sensing Letters, 16(2), 236-240. (SCI)

    [14] Wang, N., Wang, R., Mo, D., Li, G., Zhang, K., & Wu, Y. (2018). Inverse synthetic aperture LADAR demonstration: system structure, imaging processing, and experiment result. Applied optics, 57(2), 230-236. (SCI)

    [15] Li, G., Wang, N., Mo, D., Wang, R., Zhang, Z., & Wu, Y. (2017). Inverse synthetic aperture ladar imaging with stepped‐frequency continuous waveform. Electronics Letters, 53(21), 1424-1426. (SCI)

    [16] Li, G., Wang, N., Mo, D., Wang, R., Zhang, Z., & Wu, Y. (2017). Inverse synthetic aperture ladar imaging with stepped‐frequency continuous waveform. Electronics Letters, 53(21), 1424-1426. (SCI)

    [17] Li, G., Wang, N., Wang, R., Zhang, K., & Wu, Y. (2017). Imaging method for airborne SAL data. Electronics Letters, 53(5), 351-353. (SCI)

    [18] Mo, D., Wang, R., Li, G. Z., Wang, N., Zhang, K. S., & Wu, Y. R. (2017). Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement. Applied Physics B, 123, 1-8. (SCI)

    [19] Wang, N., Wang, R., Li, G., Zhang, K., & Wu, Y. (2016, October). Experiment of inverse synthetic aperture ladar at 1.1 km. In Optical Measurement Technology and Instrumentation (Vol. 10155, pp. 375-378). SPIE. (EI)

    [20] Li, G., Wang, R., Wang, P., Zhang, K., & Wu, Y. (2016, October). Synthetic aperture LADAR at 1550 nm: system demonstration, imaging processing and experimental result. In Optical Measurement Technology and Instrumentation (Vol. 10155, pp. 896-899). SPIE. (EI)


    获奖及荣誉:
  • (1)2022年省部级二等奖

    (2)2014年省部级一等奖

    (3)2010年省部级二等奖